Fast sparsely synchronized brain rhythms in a scale-free neural network.
نویسندگان
چکیده
We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D. For small D, full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp>〈fi〉 (〈fi〉: ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; in particular, the case of fp>4〈fi〉 is referred to as sparse synchronization. For the case of partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes a critical value D* (which is determined by employing an order parameter), a transition to unsynchronization occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For D<D*, population synchronization emerges in the whole population because the spatial correlation length between the neuronal pairs covers the whole system. Furthermore, the degree of population synchronization is also measured in terms of two types of realistic statistical-mechanical measures. Only for the partial and sparse synchronization do contributions of individual neuronal dynamics to population synchronization change depending on their degrees, unlike in the case of full synchronization. Consequently, dynamics of individual neurons reveal the inhomogeneous network structure for the case of partial and sparse synchronization, which is in contrast to the case of statistically homogeneous random graphs and small-world networks. Finally, we investigate the effect of network architecture on sparse synchronization for fixed values of J and D in the following three cases: (1) variation in the degree of symmetric attachment, (2) asymmetric preferential attachment of new nodes with different in- and out-degrees, and (3) preferential attachment between pre-existing nodes (without addition of new nodes). In these three cases, both relation between network topology (e.g., average path length and betweenness centralization) and sparse synchronization and contributions of individual dynamics to the sparse synchronization are discussed.
منابع مشابه
Effect of Small-World Connectivity on Fast Sparsely Synchronized Cortical Rhythms
Fast cortical rhythms with stochastic and intermittent neural discharges have been observed in electric recordings of brain activity. For these fast sparsely synchronized oscillations, individual neurons fire spikings irregularly and sparsely as Geiger counters, in contrast to fully synchronized oscillations where individual neurons exhibit regular firings like clocks. We study the effect of ne...
متن کاملA path to synchronized rhythmicity in large-scale networks
A path to synchronized rhythmicity in large-scale networks 2 Abstract In large-scale neural networks in the brain the emergence of global behavioral patterns, manifested by electroencephalographic activity, is driven by the self-organization of local neuronal groups into synchronously functioning ensembles. However, the laws governing such macrobehavior and its disturbances, in particular epile...
متن کاملGeometric Analysis of Population Rhythms in Synaptically Coupled Neuronal Networks
We develop geometric dynamical systems methods to determine how various components contribute to a neuronal network's emergent population behaviors. The results clarify the multiple roles inhibition can play in producing different rhythms. Which rhythms arise depends on how inhibition interacts with intrinsic properties of the neurons; the nature of these interactions depends on the underlying ...
متن کاملEffect of Inhibitory Spike-Timing-Dependent Plasticity on Fast Sparsely Synchronized Rhythms in A Small-World Neuronal Network
We consider the Watts-Strogatz small-world network (SWN) consisting of inhibitory fast spiking Izhikevich interneurons. This inhibitory neuronal population has adaptive dynamic synaptic strengths governed by the inhibitory spike-timing-dependent plasticity (iSTDP). In previous works without iSTDP, fast sparsely synchronized rhythms, associated with diverse cognitive functions, were found to app...
متن کاملEffect of intermodular connection on fast sparse synchronization in clustered small-world neural networks.
We consider a clustered network with small-world subnetworks of inhibitory fast spiking interneurons and investigate the effect of intermodular connection on the emergence of fast sparsely synchronized rhythms by varying both the intermodular coupling strength J(inter) and the average number of intermodular links per interneuron M(syn)(inter). In contrast to the case of nonclustered networks, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 92 2 شماره
صفحات -
تاریخ انتشار 2015